Premetazoan ancestry of the Myc-Max network.

نویسندگان

  • Susan L Young
  • Daniel Diolaiti
  • Maralice Conacci-Sorrell
  • Iñaki Ruiz-Trillo
  • Robert N Eisenman
  • Nicole King
چکیده

The origin of metazoans required the evolution of mechanisms for maintaining differentiated cell types within a multicellular individual, in part through spatially differentiated patterns of gene transcription. The unicellular ancestor of metazoans was presumably capable of regulating gene expression temporally in response to changing environmental conditions, and spatial cell differentiation in metazoans may represent a co-option of preexisting regulatory mechanisms. Myc is a critical regulator of cell growth, proliferation, and death that is found in all metazoans but absent in other multicellular lineages, including fungi and plants. Homologs of Myc and its binding partner, Max, exist in two of the closest living relatives of animals, the choanoflagellate Monosiga brevicollis (Mb) and Capsaspora owczarzaki, a unicellular opisthokont that is closely related to metazoans and choanoflagellates. We find that Myc and Max from M. brevicollis heterodimerize and bind to both canonical and noncanonical E-boxes, the DNA-binding sites through which metazoan Myc proteins act. Moreover, in M. brevicollis, MbMyc protein can be detected in nuclear and flagellar regions. Like metazoan Max proteins, MbMax can form homodimers that bind to E-boxes. However, cross-species dimerization between Mb and human Myc and Max proteins was not observed, suggesting that the binding interface has diverged. Our results reveal that the Myc/Max network arose before the divergence of the choanoflagellate and metazoan lineages. Furthermore, core features of metazoan Myc function, including heterodimerization with Max, binding to E-box sequences in DNA, and localization to the nucleus, predate the origin of metazoans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinated regulation of c-Myc and Max in rat liver development.

The processes of liver development and regeneration involve regulation of a key network of transcription factors, the c-myc/max/mad network. This network regulates the expression of genes involved in hepatocyte proliferation, growth, metabolism, and differentiation. In previous studies on the expression and localization of c-Myc in the fetal and adult liver, we made the unexpected observation t...

متن کامل

MAX and MYC: a heritable breakup.

The overexpression of MYC, which occurs in many tumors, dramatically disrupts the equilibrium between activation and repression of the oncogenic MYC/MYC-associated protein X (MAX)/MAX dimerization protein 1 (MXD1) network, favoring MYC-MAX complexes and thereby impairing differentiation and promoting cell growth. Although for some time it has appeared that MAX is necessary for both the activati...

متن کامل

Stabilizers of the Max homodimer identified in virtual ligand screening inhibit Myc function.

Many human cancers show constitutive or amplified expression of the transcriptional regulator and oncoprotein Myc, making Myc a potential target for therapeutic intervention. Here we report the down-regulation of Myc activity by reducing the availability of Max, the essential dimerization partner of Myc. Max is expressed constitutively and can form unstable homodimers. We have isolated stabiliz...

متن کامل

The Myc/Max/Mad Transcription Factor Network - ReadingSample

Recently determined structures of a number of Myc family proteins have provided significant insights into the molecular nature of complex assembly and DNA binding. These structures illuminate the details of specific interactions that govern the assembly of nucleoprotein complexes and, in doing so, raisemore questions regarding Myc biology. In this review, we focus on the lessons provided by the...

متن کامل

Structural aspects of interactions within the Myc/Max/Mad network.

Recently determined structures of a number of Myc family proteins have provided significant insights into the molecular nature of complex assembly and DNA binding. These structures illuminate the details of specific interactions that govern the assembly of nucleoprotein complexes and, in doing so, raise more questions regarding Myc biology. In this review, we focus on the lessons provided by th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 28 10  شماره 

صفحات  -

تاریخ انتشار 2011